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Abstract The aim of this study was to use DSC and

X-ray diffraction measurements to determine the pore size

and pore wall thickness of highly ordered SBA-15 mate-

rials. The DSC curves showed two endothermic events

during the heating cycle. These events were due to the

presence of water inside and outside of mesopores. The

results of pore radius, wall thickness and pore volume

measurements were in good agreement with the results

obtained by nitrogen adsorption measurement, XRD and

transmission electron microscopy.

Keywords SBA-15 silica � Small angle X-ray
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Introduction

In the 90’s years researchers of the Mobil Oil Corporation

developed a new family of ordered mesoporous sı́lica/

aluminosilicate and designated this family of mesoporous

materials as M41S [1, 2]. This discovery has, indeed,

inspired scientists on a global scale to research creatively

into the characterization, design, synthesis, modification,

and application of these materials [3–5].

Since the pioneering research of Mobil scientists a whole

new range of mesoporous materials have been synthesized.

Recently, block copolymers have been used for synthesis of

mesoporous materials, such as SBA-15 [6, 7] block

copolymer template have been used for synthesis of mes-

oporous silica with large ordering and a variety of mor-

phologies. Depending on the polymers used as template and

synthesis process mesopores with different structures,

however, with uniform pore diameters between 10 and

30 nm were formed. This silica is useful for application

running from microelectronics to medical diagnosis, open-

ing a wide variety of utilities beyond the traditional areas of

materials for catalysis and absorbers [1–7].

Thermoporometry is a method of textural characteriza-

tion which is based on the thermal analysis of the liquid-

solid transformation of a pure capillary condensation inside

the porous [8]. Recent articles report the low temperature

constant rate thermodesorption as a tool to characterize

porous solids [9, 10], melting and freezing behavior of

water [11], benzene and cyclohexane [12] inside ordered

mesoporous materials. Other techniques of thermal analy-

sis were also used as tools to estimate the surface area and
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porous volume in ordered mesoporous materials [13, 14].

Thermoanalytical techinques have also been used for

sorption studies [15], characterization of mesoporous

materials synthesized in different matrices [16], and

determination of acid properties of semicristaline zeolitic

mesoporous UL-ZSM-5 aluminesilicate [17].

From the synthesis of these materials with open cylin-

drical mesopores of uniform size it was possible to evaluate

textural properties. The aim of this study was to use this

technique to evaluate pore radius, wall thickness and por-

ous volume of highly ordered mesoporous SBA-15 silica

completed with the results of XRD studies, and comparing

these results with those obtained by nitrogen adsorption

and HRTEM.

Experimental

Materials

SBA-15 silica was synthesized as reported by Zhao et al.

[6, 7], using Pluronic P123 triblock copolymer

(EO20PO70EO20) in acid media. DSC curves were recorded

in a DSC-50 cell (Shimadzu) using open aluminum cruci-

bles with about 20 mg of sample (SBA-15 silica ? water,

1:3 in mass) under dynamic nitrogen atmosphere

(100 mL min-1) and cooling rate of 0.5 K min-1 from

room temperature to 223 K and heating at a heating rate of

0.5 K min-1 to 298 K. DSC cell was cooled down using

controlled liquid nitrogen flow by the aid of a TAC-50

(Shimadzu) cooling unit.

The small angle X-ray diffraction studies (XRD) were

carried out using a rotating anode at 10 kW. The wave-

length of the copper monochromatic X-ray beam was

k = 1.5418 Å. An image plate detector was utilized to

record the scattering vector q = (4psin h)/k, where h
denotes the half the scattering angle. The intensity was

recorded for 1 h.

The pore width and pore wall thickness of SBA-15 were

evaluated from the XRD unit cell parameter and primary

mesopore volume using the geometrical method [18].

Adsorption isotherms were measured with Micromeri-

tics ASAP 2010 volumetric adsorption analyzer using

nitrogen of 99.998% purity. Measurements were performed

in the range of relative pressure from 10-6 to 0.99 liquid

nitrogen on the samples degassed for 2 h under reduced

pressure at 473 K. The specific surface area was evaluated

using BET method [19]. The total pore volume was esti-

mated from the amount adsorbed at the relative pressure of

0.99. The pore size distribution (PSD) was calculated using

BJH algorithm [20], with the relation between the capillary

condensation pressure and the pore diameter established by

Kruk et al. [21].

For TEM observations, the samples were studied using a

JEM-3010 (Cs) 0.6 mm, resolution 0.17 nm) at 300 kV.

High resolution transmission electron microscopy

(HRTEM) images were recorded with a slow scan CCD

(Gatan 794). The SBA-15 sample was dispersed in iso-

propyl alcohol and put on a holey carbon film on a Cu grid.

Results and discussion

Figure 1 shows the diffractogram for the SBA-15 silica

sample. The diffraction peaks were indexed for (100),

(110), (200), (210) and (300) reflections based on a hex-

agonal structure, space group p6 mm [6, 7]. The interplanar

spacing (dhkl) and the lattice parameter (a) were calculated

for the (100), (110), (200) and (210) reflections. Figure 2a

shows that Nitrogen adsorption isotherm for SBA-15

sample is similar to those ones reported by Zhao et al. [6,

7] and, Kruk and Jaroniec [22]. The isotherm of SBA-15

sample has shown hysteresis loop with sharp adsorption

and desorption branch. The sharpness of the branched

adsorption is an indicative of a narrow porous size distri-

bution (PSD) shown in Fig. 2b. The branched adsorption

was located at relative pressures in the 0.64–0.8 range, a

high relative pressure, similarly to good-quality mesopor-

ous materials [21, 22]. The BET specific surface area of the

SBA-15 sample was 610 m2 g-1 with pore size of 7.4 nm

to the SBA-15 sample, these parameters were similar to the

mesopore size for materials with honeycomb structures in

good agreement with those reported by Zhao et al. [6, 7].

The uniform channels characteristics of the SBA-15

silica obtained was confirmed by the HRTEM image as

shown in Fig. 3a. The pore size and the wall thickness

average obtained were 6.7 and 6.1 nm, respectively, whose
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Fig. 1 Small angle X-ray diffraction data for the SBA-15 silica

sample
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results were obtained by Fourier Transformed without

image corrections (Fig. 3b). The DSC curve of water in

SBA-15 sample exhibited two peaks upon heating. This

event showed a sharp exothermic peak that corresponds to

water melting inside mesopores at 260.03 K.

The second endothermic peak is observed at 271.88 K,

regarding to the melting of water outside of the mesopores.

The first peak that corresponds to the melting point of

water inside of mesopores (Fig. 4a) was used in Eq. 1 of

Laundry [9] and Ishikiriyama et al. [23] to calculate the

pore radius of the SBA-15 sample.

Rp ¼
�33:3

DT
� 0:32þ dm ð1Þ

where, DT = (T0 - T) is the decrease of melting temper-

ature of water in mesopores and dm = 1.12 nm is the

presence a thin film of non-freezable liquid adjacent to pore

wall.

Total pore volume Vp (e.g., cm3 g-1) is another

important parameter for characterizing porous materials

[9]. A simple calculation of Vp can be made from a single

thermoporometry heating experiment using the Eq. 2:

Vp ¼
DHporousmliq 1

DHTotal msolqliq

ð2Þ

where liquid mass (mliq), water density (qliq), porous solid

mass (msol), pore melt area (DHporous) and excess melt peak

areas (DHTotal) are parameters obtained from the DSC melt

endotherms and their ratio is related to the fraction of

liquid contained in the pores.

Equation 2 assumes a temperature-independent heat

DHfusion and liquid density, as well as a sufficient separation

of the pore and excess melt peaks to independently integrate

their areas. It is also assumed that all of the liquid has frozen

during the initial quench cooling step and melts during

heating, i.e., the contribution of the thin liquid layer adjacent

to pore walls and other non-frozen liquid is negligible. Fig-

ure 4b shows a porous size distribution with a mean radius of

4.25 nm. Applying a heating rate to a melting sample an

turning a nearly known mass of water gives a measure of the

amount of pore liquid undergoing phase transition.

Table 1 shows comparative results between pore size

and wall thickness average, with were obtained by analysis

of nitrogen adsorption isotherm, transmission electronic

microscopy and thermoporometry. The values of these

parameters clearly show that data obtained by thermopo-

rometry showed estimated values near to ones those

obtained by conventional methods.

Fig. 2 a Nitrogen adsorption isotherm for the SBA-15 silica sample.

b Pore size distribuition (PSD) for the SBA-15 silica sample
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Fig. 3 a The HRTEM image of the cylindrical mesoporous of the

sample of SBA-15 silica. b Distribution graph of porous width and

wall thickness of the sample of SBA-15 silica
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Fig. 4 a Pore size distribution for porous size distribution of SBA-15

sample. b DSC curve for water in SBA-15 sample, showing two

endothermic peaks, the first peak regarding water melting inside the

mesoporous and the second peak regarding melting water outside the

one
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Conclusions

The water melting temperature determined by DSC inside

and outside the pores allowed us to evaluate the radii of

mesopores and wall thickness of SBA-15 sample. The

current study demonstrates that DSC studies are important

for characterization of ordered mesoporous materials and

to evaluate their textural and structural quality properties. It

is possible to estimate the porous radius and volume, wall

thickness and surface area, associating DSC, XRD and

TEM techniques. DSC gives preliminary information on

the material properties that can be useful to decide if they

are worth to perform further characterization by nitrogen

adsorption isotherm and TEM, which are more accurate

techniques, but require longer analysis time and imply in

much more expensive measurements.
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SBA-15 sample Rp/nm Wp/nm d(100)/nm a/nm bd/nm Vp/cm3g-1

Thermoporometry 4.25 8.50 11.1 12.8 4.34 1.12
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TEM *3.35 *6.7 11.1 12.8 *6.1 –

Rp = pore radius; Wp = pore width; d(100) = SAXRD interplanar spacing in the 100 direction; a = lattice parameter bd = wall thickness

*Data obtained directly of the HRTEM image without correction
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